
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

Fault Injection and Test Approach for Behavioural
Verilog Designs using the Proposed RASP-FIT Tool

Abdul Rafay Khatri1, Ali Hayek2, Josef Börcsök3
Department of Computer Architecture and System Programming,

University of Kassel, Kassel, Germany

Abstract—Soft-core processors and complex Field Pro-
grammable Gate Array (FPGA) designs are described as an
algorithmic manner, i.e. behavioural abstraction level in Hard-
ware Description Languages (HDL). Lower abstraction levels
add complexity and delays in the design cycle as well as in the
fault injection approach. Therefore, fault simulation/emulation
techniques are demanded to develop an approach for testing of
design and to evaluate dependability analysis of FPGA designs
at this abstraction level. Broadly, the fault injection techniques
for FPGA-based designs at the HDL code level are categorised
into emulation and simulation-based techniques. This work is
an extension of our previous methodologies developed for FPGA
designs written at data-flow and gate abstraction levels under
the proposed RASP-FIT tool. These methodologies include fault
injection by code parsing of the SUT, test approach for finding
the test vectors using dynamic and static compaction techniques,
fault coverage, and compaction ratio directly at the code level of
the design. In this paper, we described the proposed approaches
briefly, and the enhancement of a Verilog code modifier for the
behavioural designs is presented in detail.

Keywords—Behavioural designs; code parsing; fault injection;
test approach; Verilog HDL

I. INTRODUCTION

During the last few decades, the Very Large Scale Inte-
grated (VLSI) systems and soft-core processors have been de-
veloped and implemented on the Field Programmable Gate Ar-
ray (FPGA). These systems are written in Hardware Descrip-
tion Languages (HDL). HDL is also involved in enhancing sev-
eral methodologies associated with digital system testing and
fault simulation/emulation applications. When a new method
is devised and fabricated for a particular design, it requires
testing which can confirm the accuracy of the design and the
testing technique itself. These testing procedures are carried
out in the design laboratory rather than in a factory. Therefore,
it requires the involvement of the design and test engineers.
The design engineer first converts the system specifications in
an HDL language such as Verilog. The design engineers can
verify the design & apply advanced testing techniques at an
early stage by using HDL and testing can directly be applied
to the designs. It diminishes the passageway between the tools
and methodologies which are used at the time of development
of design and testing [1]. It also contributes a rival service by
lessening the cost and production time for a system [2].

One of the most popularly accepted HDL language for
implementing soft-core processors and Application Specific
Integrated Circuit (ASIC) is Verilog HDL. These designs are
implemented on the FPGA [1], [3]. In a Register Transfer
Level (RTL) design process, the designer first formulates
the design specification in an RTL level language such as

Verilog. RTL is a combination of data-flow and behavioural
modelling, which characterises the design [2]. For vast and
intricate designs, the highest level of abstraction is applied,
i.e. behavioural abstraction level. The plan is to develop some
methods to bring the testability approaches and dependability
evaluation techniques to achieve cost-effectiveness and reduce
time solution directly at the code level of the target design.

Testing of digital circuits has traditionally been accom-
plished using fault models at lower abstraction level or sub-
sequently. Testability is one of the most crucial dependability
factors which should be investigated during the development
flow stages along with reliability, speed, power consumption
and cost for the end user [4]. The integrated circuit has been
extended in both size and complexity by the passing days with
the continually progressing technology. Fault simulation and
testing methods at higher levels of abstraction have a greater
chance of being integrated well into the overall design flow.

Fault Injection (FI) method performs an indispensable role
in different testability approaches and dependability analysis of
FPGA-based designs. FI method injects faults in the System
Under Test (SUT) and then the responses of the golden (fault-
free) system are matched with the responses of the faulty SUT.
After that results are used in the evaluation of the SUT for
verification and robustness [1], [5]. We introduced the term
“hardness analysis”. It is an algorithm, developed under the
proposed tool, which is used to find the sensitive location of
the design and then to apply redundancy to those locations to
achieve high reliability in terms of the reduction in Soft-Error
Rate (SER) [6]. However, in this work, the hardness analysis
is not discussed.

This work is a continuation of our previous work [7]–
[10]. In these works, authors developed an FI tool named
RASP-FIT (RechnerArchitektur and SystemProgrammierung-
Fault Injection Tool). The first part of the tool’s name is
the German name of the institute. There are three major
components of the proposed RASP-FIT tool discussed in this
paper:

1) Verilog code modifier (code parser) based on instru-
mentation technique.

2) Fault injection control unit provides full controllabil-
ity and observability about fault locations.

3) Result analyser consists of test vector compaction and
Fault Coverage (FC) estimation.

In this work, fault injection modifier is upgraded to deal with
the vast and complicated design written at the behavioural
level. Once, the faulty design is achieved then the proposed

www.ijacsa.thesai.org 57 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

fault injection testing approach is applied and obtained the
small number of test vectors for maximum FC.

The organisation of the paper is as follows: The background
is explained in Section II. The improvement of the RASP-
FIT tool to modify the behavioural designs is introduced in
Section III, and it also illustrates the proposed functionalities
of the result analyser. Results of fault injection algorithm,
test vectors, fault coverage and compaction are presented in
Section IV. Lastly, Section V concludes the paper and presents
some directions for future work.

II. BACKGROUND

Fault injection and fault simulation approaches are utilised
to investigate the consequence of a fault on an embedded
hardware/programming framework. As a rule, fault injection is
performed on abstract models of the SUT either to recoup early
outcomes when the realisation of the system is not finished up
yet or to accelerate the runtime for fast fault simulation on
explicit models. The higher level of abstraction is RTL, which
can not cover all the gate level faults [4]. Fault simulation
applications at the RTL level can, for the most part, beat
the computational expenses. However, existing higher level
fault simulation applications does inadequately relate to RTL
fault simulation. For assessing a design concerning robustness
against soft-errors, for example, injected by radiation, the
system is simulated while artificial faults are incorporated [11].
Authors in [12] demonstrated that RTL fault models could be
used for the robustness evaluation of FPGA-based designs. In
this work, new RTL fault models are developed and inserted to
perform fault injection campaign. Fault injection tool “TSIM"
[13] has viewed as a minimal cost, adaptable and accurate
framework for fault injection experimentation at the RTL level
of the designs.

Concurrent fault simulation is applied to the RTL designs,
finds fault coverage, test vectors and developed RTL fault
models are presented in [14]. Sandia et al. showed in their work
that fault injection experiment at the RTL level is very close
to the real-time experiment using radiations cause faults [11].
An approach to reduce the computational expense is to initiate
fault injection at a higher level of abstraction. Numerous
techniques have been proposed in the last couple of decades, in
which faults are deliberately introduced at the different level of
abstractions such as, RTL and gate levels [15]. As the size of
components on the integrated circuits is reduced, so it makes
the test, verification and debugging very complicated. Authors
in [16] presented an auto-correction mechanism for the digital
design to debug it. It reduces the time-to-market and debugging
budget because more than 60% of the verification effort is
spent on debugging.

Authors in [17] presented the characterisation method for
Single Event Transient (SET) sensitivity of gates for varying
pulse widths. In this method, they explained a weighted fault
injection drive and calculated the SET sensitivity of combi-
natorial design. They also proposed that SET analysis can be
obtained at the RTL level of design. The correlation between
RTL testability and gate-level stuck-at fault coverage is carried
out and observed. RTL testability was achieved by TASTE tool
whereas FlexTest is used to obtain fault coverage. The design
methodology is developed for performing fault modelling, and

enumeration of various statements are taken place for fault
injection. In this work, the mutation technique is used for
developing faulty circuit [4]. In comparison with this work,
authors injected saboteur models for bit-flip, stuck-at 1 & 0
fault models [18].

In this work, a tool (RASP-FIT) is developed for fault
injection testing and fault simulation applications. The tool
works on the instrumentation technique for any Verilog design
by injecting saboteur. These saboteurs consist of logic gates,
e.g. XOR, OR and AND with an inverter for bit-flip,
stuck-at 1 & stuck-at 0 fault models respectively.

III. THE RASP-FIT TOOL AND ITS COMPONENTS

The RASP-FIT tool can modify the FPGA-based designs,
written in Verilog HDL. This tool includes Verilog code
modifier (Fault Injection Algorithm), which changes the code
by introducing faults. The way of modifying code at each
abstraction level is separate. Therefore, fault models must be
defined at that abstraction level. The bit-flip, stuck-at 1 & 0
fault models, are adopted for target system modification. In the
proposed fault injection technique, fault models are developed
using few logic gates such as XOR, OR and AND with NOT
added in the HDL code. Verilog code modifier reads the code
line by line and extracts keyword, operators or variables. The
criterion for fault injection is particularised for every keyword
and operator. It also includes the fault injection manager (i.e.
Fault Injection, Selection and Activation (FISA) control unit)
in each copy of the SUT to elect and stimulate faults [1], [7],
[8].

In this paper, behavioural designs are considered for fault
modification, obtaining test vectors, fault coverage and com-
paction analysis under the RASP-FIT tool. A tabbed-based
standalone Graphical User Interface (GUI) is developed. Fig.
1 shows the fault injection analysis tab.

Fig. 1. Graphical window for FIA of the RASP-FIT tool.

A. Flowchart of FIA for Behavioural Designs

Behavioural modelling gives a convincing way to express
design functionality algorithmically. Therefore, the soft-core
processor and intricate FPGA-based designs are written at
this level [19]. It is the highest level of abstraction, which
describes the functional operation of the design. This level does
not provide any information about the implementation of the
design. The behaviour of the design is expressed by procedural

www.ijacsa.thesai.org 58 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

constructs, e.g. initial and always. The initial block
statements run only one time, and always constructs execute
again and again when the sensitivity list parameter changes
their value [20], [21]. These constructs control the simulation
and handle variables of different data types. The code parsing
technique (fault injection mechanism) is different for each
abstraction level, e.g. behavioural. The prototypes of following
constructs, for example, always-initial blocks, blocking and
non-blocking assignments, case, if-else construct are added
to the RASP-FIT tool [10]. A few more features are also
appended which inject fault in user-defined functions, vectors
and a part-select/bit-select of vector variables in this work.

Modification of the code manually is a very challenging
task. Therefore, the automatic code parser (FIA) under the
RASP-FIT tool is devised for FPGA-based designs. Fig. 2
shows the fault injection algorithm flowchart. The synthesiz-
able Verilog design file is applied to the RASP-FIT tool to the
fault injection modifier as an input which parses the code line
by line. This tool neglects and eliminates the single as well
as multi-line comments. When it parses a line of the code
(the line ends with a terminator “;”), it extracts the Verilog
keyword and operator from it [8]. At behavioural abstraction
level, the whole always construct read first by the tool and
then analysed for the fault injection modification.

Fig. 2. Flowchart of the RASP-FIT code modifier (FIA).

Two more libraries (BehaveLib and behaveDataLib) are
added in this work for behavioural designs as shown in Fig. 2
(shaded by the colour). The first library “BehaveLib” consists
of the always, initial keywords. There are following
statements which are used with procedural constructs, e.g.

TABLE I. VERILOG HDL OPERATORS FOR BEHAVIOURAL LEVEL [22]

Verilog Behavioural

Operators
Operator Name

Functional

Group Name

[] Bit or Part Select -

! , ∼ Logical Negation, Negation Logical, Bit-wise

&, |, ∼&, ∼|, ^, ∼^or ^∼ AND, OR, NAND, NOR, XOR, XNOR Reduction

+ , - Unary plus and minus Arithmetic

{}, {{}} Concatenation, Replication -

* Multiply

Arithmetic

/ Divide

% Modulus

+ Binary Plus

- Binary Minus

<< Shift Left
Shift

>> Shift Right

> Greater than

Relational
>= Greater than or Equal to

< Less than

<= Less than or equal to

= =, ! = Equality, Inequality Equality

&, |, ^ AND, OR, XOR Bit-wise

&&, | | AND, OR Logical

? : Conditional Conditional

always. The way to inject faults in these statements is
explained in the sequel.

1) Blocking and Non-blocking Statements: Block state-
ments are executed differently in the sequential block and
parallel block. In sequential block, they executed before the
execution of the statement following it whereas, in the parallel
block, the statements do not prevent their executions. Other
procedural statements are called non-blocking assignments.
In these assignments, numerous variable assignments within
the same time step are made without consideration of order
or declaration arrangement. The fault injection techniques in
these statements inside the always constructs are shown in
Fig. 3 [21]. Expression in Fig. 3 can be a single bit variable,
vector, bit-select/part-select of vector, boolean expression using
operators given in Table I.

module nameSUT (i n p u t s , o u t p u t s) ;
. . .
. . . ;
/ / non−b l o c k i n g
V a r _ l v a l u e <= Expr ; / / f a u l t −f r e e
V a r _ l v a l u e <= (fn ^ Expr) ; / / f a u l t y

/ / s i m i l i a r l y f o r b l o c k i n g
V a r _ l v a l u e = Expr ; / / f a u l t −f r e e
V a r _ l v a l u e = (fn ^ Expr) ; / / f a u l t y

Fig. 3. Prototypes for blocking and non-blocking assignments.

2) Vector Bit-select and Part-select: Bit-select extracts a
particular bit from an input vector, a vector net, a vector reg,
integer, or time variable, or parameter. Instead of a single bit,
many adjacent bits in a vector net, vector reg, integer, or time
variable, or parameter are chosen and are known as part-select.
The part-select is distinguished into two types, an indexed
part-select and a constant part-select. Fig. 4 shows the fault
modification in the code for bit-select and part-select.

www.ijacsa.thesai.org 59 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

module module_name (a , . . .) ;
.
.
input [3 : 0] a ;
.
.
/ / B i t−s e l e c t
V a r _ l v a l u e <= a [2] ; / / f a u l t −f r e e
V a r _ l v a l u e <= (fn ^ a [2]) ; / / S i n g l e f a u l t a t

a [2] i n a .

/ / Part−s e l e c t
V a r _ l v a l u e = a [2 : 1] ; / / f a u l t −f r e e
V a r _ l v a l u e = ({ fn , fn +1} ^ a [2 : 1]) ;
/ / Two f a u l t s a t a [2] and a [1] .

Fig. 4. Prototypes for bit-select and part-select for fault injection under
RASP-FIT.

3) Conditional Statement: The conditional statement (or if-
else statement) is used to decide on whether the statement is
executed. The expression with if or else-if may contain a
single variable, rVals (right variables) and lVals (left variables)
separated by relational operators or combinations of different
expressions. Fig. 5 shows the examples of expressions, that can
be used with conditional expressions with the fault injection
strategy. When the expression is constant, the tool does not
inject the fault in the expression.

module nameSUT (i n p u t s , o u t p u t s) ;
. . .
. . . ;
/ / P r o t o t y p e 1
i f (Expr1) / / f a u l t −f r e e
i f (fn ^ Expr1) / / f a u l t y

/ / P r o t o t y p e 2
i f (Expr1 == 1 ’ d0) / / f a u l t −f r e e
i f ((fn ^ Expr1) == 1 ’ d0) / / f a u l t y

/ / P r o t o t y p e 3
i f (Expr1) < (Expr2)
i f ((fn ^ Expr1)) < ((fn +1 ^ Expr2))

Fig. 5. Expression prototypes for if and else if.

4) Case Statement: The case statement is a multi-way
decision statement. It examines the expression matches one
of many other expressions or branches accordingly. The last
option of the case statement is the default which executes when
none of the condition is met [4]. The RASP-FIT includes
all prototypes of case statements, e.g. casez and casex
statements. Fig. 6 shows a fault injection method for the case
statement. Faults are injected in statements and expressions.

5) User-defined Primitives & Functions: Functions are
similar to tasks, except that functions return only a single
value to the expression from which they are called. A user-
defined file (named user_defined_netlist.csv) is created and
added with the RASP-FIT tool folder. This file consists of
two columns; the first column contains the names of user-
defined primitives or functions used in the modules with I/O

/ / Case S t a t e m e n t
case (Expr)

Expr : s t a t e m e n t
Expr { , Expr } : s t a t e m e n t
d e f a u l t : s t a t e m e n t

endcase

/ / F a u l t y Case S t a t e m e n t
case (fn ^ Expr)

Expr : fn +1 ^ s t a t e m e n t
Expr { , Expr } : s t a t e m e n t
d e f a u l t : f n +N ^ s t a t e m e n t

endcase

Fig. 6. Prototypes for case statement under RASP-FIT.

ports. Whereas, the second column consists of the positions of
inputs in the function or primitives for fault insertion locations.
Both columns are separated by a semi-colon ‘;’. When RASP-
FIT is run, the contents of the file are read and added to the
predefined libraries for the keywords for each abstraction level.

B. Result Analyser

As described earlier, authors developed the Automatic Test
Pattern Generation (ATPG) with hybrid compaction techniques
and a method to find the critical nodes of the SUT at the code
level under the proposed tool and presented in the previous
work [1], [7], [8]. In the previous works, the FC and compact
Test Vectors (TV) were calculated for the Verilog HDL designs
written at gate-level and data-flow. Firstly, behavioural designs
are modified, and faulty code is generated. The proposed test
method is applied to the behavioural designs, and test vectors
and compaction analysis are carried out and presented in the
paper. A small description of the proposed approaches is added
to recall the idea briefly.

1) Test Approach: Fault Injection Testing: Testing of de-
sign becomes essential to guarantee the fault-free operation of
devices. Various techniques have been introduced which can
test the digital systems realised on FPGA, and are generally
acknowledged as test pattern generation methods [7]. The
Verilog file is applied to the tool as an input, and the tool
modifies the code to generate the faulty copies of the Verilog
design, along with the top module file. The top file contains
instantiations of the golden model, and faulty models, com-
parator block (compare the responses), dynamic compaction
block (select qualified test vectors) and memory (to store
responses in a text file). All these components of the top
module are programmed by the RASP-FIT tool in Verilog
HDL during the FIA process. Fig. 7 shows all components
of the top module file and components of the proposed ATPG
approach. Xilinx ISE project navigator tool is used to do the
project and simulate the design using Modelsim tool. In order
to simulate a design, a test bench is needed, which contains
input stimuli signals such as fault selector signal and random
pattern generator utilising a Linear Feedback Shift Register
(LFSR). In this paper, all proposed approaches are applied to
some simple behavioural designs. FC and compaction (C) are
calculated by Eq. 1 and Eq. 2, respectively:

FC =
FD

FT
× 100% (1)

www.ijacsa.thesai.org 60 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

Fig. 7. Simulation environment for proposed fault injection testing.

C =

(
1−

TStatic compact

Tq

)
× 100% (2)

During the ATPG process, a mechanism is defined which can
reduce the number of test vector generation. It is widely known
as dynamic compaction, and it is a part of an ATPG procedure
described step by step shortly in Algorithm 1. Using this
algorithm, we obtained the efficient test vectors which detect
more faults. Static compaction is a simple approach, and it is
not part of the ATPG procedure. Static compaction is used to
reduce the test vector count further which were obtained during
the ATPG method with dynamic compaction. It is described
in Algorithm 2.

Algorithm 1 Proposed dynamic compaction algorithm [1]
1: Run the simulation by applying random input pattern and

perform fault injection experiment
2: Count the fault detections for each pattern
3: Compare the sum with the set-point value
4: if Is sum greater than or equal to set-point value then
5: Save as qualified test vectors Tq

6: Increase the Tq count by one
7: else
8: Apply another pattern
9: end if

10: Go to step 2
11: Stop the simulation design when Tq count reaches 100
12: Stored all qualified vectors Tq in the text files

2) System Under Test (SUT): To validate the proposed
techniques, the authors developed various simple designs at
behavioural abstraction level. The purpose of these designs
is to utilise all possible operators and keywords specifically
used for behavioural modelling and validate the fault injection
capability of RASP-FIT tool for behavioural designs. These
operators are depicted in Table I. Verilog commands, and their
prototypes for fault injection are described in Section III. The

Algorithm 2 Proposed static compaction algorithm
1: Detection of faults is summed for each Tq .
2: Based on step 1, TVs are sorted in descending order.
3: for Perform logical OR operation do
4: Calculate new_FC
5: if Is new_FC greater than old_FC then
6: Saved pattern as compact TV
7: else
8: Repeat step 3 for next vector
9: end if

10: Repeat step 3 to 9, stop when new_FC reaches 100%
or all Tq checked

11: end for
12: Compact test vectors for maximum FC

target designs consist of all prototypes of statements used in
always construct.

IV. RESULTS AND DISCUSSION

The RASP-FIT tool is upgraded, and now it can handle the
Verilog HDL designs written at gate, data-flow and behavioural
levels. In this paper, behavioural circuits are generated, and
code modification is performed on these designs. These de-
signs are simple Verilog designs at the behavioural level and
cover nearly all types of Verilog operators and keywords. The
sequel presents the results for fault injection, obtaining test
vectors, FC, and the compaction ratio.

A. Results: FIA for Behavioural Designs

The RASP-FIT tool is simple, fast and user-friendly. Fault
injection analysis is carried out for behavioural designs and
the time is measured. It shows the advantage of representing
the design at higher abstraction levels. The tool took a fraction
of a second to generate the faulty copies of the SUTs. Table II
shows the Verilog behavioural designs along with the number
of look-up tables, the number of total faults and the time in
seconds. The whole design can be represented in fewer lines
of code at a higher level of abstraction.

TABLE II. TIMING ANALYSIS FOR FAULTY MODULES GENERATION OF
BEHAVIOURAL DESIGNS

S.No.
Behavioural

Designs

No. of Slices

LUTs
Total Faults Time (in Seconds)

1 Adder (32-bit) 32 64 0.467

2 Circuit_Bitwise 04 09 0.137

3 Relational_Ops 04 27 0.190

4 Boolean_Ckt 04 10 0.121

5 Mux_Case 06 22 0.143

B. Results: Compact Test Vectors and Fault Coverage

The number of test vectors obtained and fault coverage is
calculated for behavioural designs and presented in Table III.
The second column shows the number of input and output of
the system under test; however, the number of faults detected
FD is shown in 3rd column. FC is calculated for each fault
model (bit-flip, stuck-at 1, stuck-at 0). One value entry in FD

& FC columns shows the same value is obtained for each fault

www.ijacsa.thesai.org 61 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

model in the analysis. However, Table IV shows the number
of qualified vectors obtained after dynamic compaction Tq . In
the proposed dynamic approach, we stop the simulation when
the Tq count reaches 100 test vectors. The proposed method
is fast and memory efficient. On these vectors, authors applied
static compaction scheme and obtained the reduced TV without
compromising the FC and mentioned in the 3rd column of
Table IV.

TABLE III. RESULT OF FAULT COVERAGE FOR FEW BEHAVIOURAL
DESIGNS

System Under Test
No. of Inputs /

Outputs (Original Circuits)

Fault Detected

(FD)

Fault Covarge

FC (%)

Adder (32-bit) 64/33 64 100

Circuit_Bitwise 9/5 09 100

Relational_Ops 6/4 27 100

Boolean_Ckt 4/2 10 100

Mux_Case 14/3 22 100

C. Results: Compaction

In this work, authors obtained the compaction analysis of
the Verilog designs written at behavioural abstraction level. For
each design, the qualified test vectors are obtained during the
ATPG and stored in a text file. These text files are applied
to the RASP-FIT tool to perform static compaction. After
static compaction, authors obtained the short test vectors.
Fig. 8 shows the static compaction achieved for the various
fault models. Table IV contains the test vectors obtained after
dynamic compaction and static compaction for bit-flip, stuck-
at 0 (SA-0) and stuck-at 1 (SA-1) fault models. Single value
entry shows that the number of test vectors are the same for
each fault model.

TABLE IV. HYBRID COMPACTION SCHEMES FOR FEW BEHAVIOURAL
DESIGNS

SUT Dynamic Compaction (Tq) Static Compaction (TV)
Compaction (%)

Bit-flip,SA-1,SA-0

Adder (32-bit) 100 2 98

Circuit_Bitwise 100 2 98

Relational_Ops 100 2 98

Boolean_Ckt 100 2,3,3 98,97,97

Mux_Case 100 3,5,4 97,95,96

V. CONCLUSION

In this work, the automatic code-parser is enhanced to
inject faults in behavioural HDL designs under the RASP-FIT
tool. Previously, the tool can modify the gate level and data-
flow designs only. Behavioural HDL codes algorithmically
represent designs. It is possible to test, evaluate fault injection
and simulation techniques directly at the code level using the
RASP-FIT tool. In this way, the tool assists design and test en-
gineers to obtain the small number of TV, FC, and compaction
of the designs at an early stage of the development flow, hence
reduce the cost and time-to-market. Few behavioural designs
are tested, and FC is calculated. It is shown that maximum FC
is achieved for fewer test vectors.

In future, result analyser will be upgraded to obtain the
compact test vectors for sequential circuits along with the
enhancement of ATPG approach. At this time, the tool work

Test vector compaction for behavioural designs

Add
er

Circ
uit

 B
itw

ise

Rela
tio

na
l O

ps

Boo
lea

n
Ckt

M
ux

 ca
se

Compaction test vectors for various behavioural circuits

0

20

40

60

80

100

C
om

pa
ct

io
n

in
 (

%
)

Dynamic
Bit-flip FM
Stuck-at 0 FM
Stuck-at 1 FM

Fig. 8. Compaction ratio for behavioural circuits.

on a single module of design. Multiple modules are also a way
to write a hierarchical behavioural design, and it is considered
for the RASP-FIT tool.

REFERENCES

[1] A. R. Khatri, A. Hayek, and J. Börcsök, “Validation of the Proposed
Fault Injection, Test and Hardness Analysis for Combinational Data-
Flow Verilog HDL Designs Under the RASP-FIT Tool,” in 2018 IEEE
16th Intl Conf on Dependable, Autonomic and Secure Computing,
16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl
Conf on Big Data Intelligence and Computing and Cyber Science and
Technology Congress(DASC/PiCom/DataCom/CyberSciTech), (Athens,
Greece), pp. 544–551, IEEE, Aug 2018.

[2] J. Cavanagh, Computer arithmetic and Verilog HDL fundamentals.
California, USA: Taylor & Francis Group, LLC, 2010.

[3] H. Ben Fekih, A. Elhossini, and B. Juurlink, Applied Reconfigurable
Computing, vol. 9040 of Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2015.

[4] M. Karunaratne, A. Sagahayroon, and S. Prodhuturi, “RTL fault mod-
eling,” in 48th Midwest Symposium on Circuits and Systems, 2005.,
pp. 1717–1720 Vol. 2, IEEE, 2005.

[5] Z. Navabi, Digital System Test and Testable Design. Boston, MA:
Springer US, 2011.

[6] A. R. Khatri, A. Hayek, and J. Börcsök, “Validation of the Proposed
Hardness Analysis Technique for FPGA Designs to Improve Reliability
and Fault-Tolerance,” International Journal of Advanced Computer
Science and Applications, vol. 9, no. 12, pp. 1–8, 2018.

[7] A. R. Khatri, A. Hayek, and J. Börcsök, “ATPG method with a hybrid
compaction technique for combinational digital systems,” in 2016 SAI
Computing Conference (SAI), (London, UK), pp. 924–930, IEEE, Jul
2016.

[8] A. R. Khatri, A. Hayek, and J. Börcsök, Applied Reconfigurable
Computing, vol. 9625 of Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2016.

[9] A. R. Khatri, A. Hayek, and J. Borcsok, “Validation of selecting SP-
values for fault models under proposed RASP-FIT tool,” in 2017 First
International Conference on Latest trends in Electrical Engineering and
Computing Technologies (INTELLECT), (Karachi, Pakistan), pp. 1–7,
IEEE, nov 2017.

[10] A. R. Khatri, A. Hayek, and J. Börcsök, “RASP-FIT: A Fast and Au-
tomatic Fault Injection Tool for Code-Modification of FPGA Designs,”
International Journal of Advanced Computer Science and Applications,
vol. 9, no. 10, pp. 30–40, 2018.

[11] T. Flenker, J. Malburg, G. Fey, S. Avramenko, M. Violante, and M. S.
Reorda, “Towards Making Fault Injection on Abstract Models a More
Accurate Tool for Predicting RT-Level Effects,” in 2017 IEEE Computer

www.ijacsa.thesai.org 62 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

Society Annual Symposium on VLSI (ISVLSI), pp. 533–538, IEEE, Jul
2017.

[12] R. Champon, V. Beroulle, A. Papadimitriou, D. Hely, G. Genevrier, and
F. Cezilly, “Comparison of RTL fault models for the robustness eval-
uation of aerospace FPGA devices,” in 2016 IEEE 22nd International
Symposium on On-Line Testing and Robust System Design (IOLTS),
pp. 23–24, IEEE, Jul 2016.

[13] J. Espinosa, C. Hernandez, and J. Abella, “Modeling RTL fault models
behavior to increase the confidence on TSIM-based fault injection,”
in 2016 IEEE 22nd International Symposium on On-Line Testing and
Robust System Design (IOLTS), pp. 60–65, IEEE, Jul 2016.

[14] Li Shen, “RTL concurrent fault simulation,” in Proceedings of the 7th
International Conference on Properties and Applications of Dielectric
Materials (Cat No 03CH37417) ATS-03, p. 502, IEEE, 2003.

[15] A. L. Sartor, P. H. E. Becker, and A. C. S. Beck, “Simbah-FI:
Simulation-Based Hybrid Fault Injector,” in 2017 VII Brazilian Sympo-
sium on Computing Systems Engineering (SBESC), pp. 94–101, IEEE,
Nov 2017.

[16] B. Alizadeh and S. R. Sharafinejad, “Incremental SAT-Based Accu-
rate Auto-Correction of Sequential Circuits Through Automatic Test
Pattern Generation,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, pp. 245–252, Feb 2019.

[17] A. Evans, D. Alexandrescu, E. Costenaro, and Liang Chen, “Hierar-
chical RTL-based combinatorial SER estimation,” in 2013 IEEE 19th
International On-Line Testing Symposium (IOLTS), pp. 139–144, IEEE,
Jul 2013.

[18] A. R. Khatri, M. Milde, A. Hayek, and J. Börcsök, “Instrumentation
Technique for FPGA based Fault Injection Tool,” in 5th International
Conference on Design and Product Development (ICDPD ’14), (Istan-
bul, Turkey), pp. 68–74, 2014.

[19] S. Palnitkar, Verilog HDL A guide to Digital Design and Synthesis.
SunSoft Press, 1996.

[20] Joseph Cavanagh, Digital Design Verilog and HDL Fundamentals.
Taylor and Francis Group, LLC, 2011.

[21] Sponsored by the Design Automation Standards Committee, IEEE
Standard for Verilog Hardware Description Language. No. April, IEEE
Computer Society, 2006.

[22] Akshay.sridharan, “Verilog HDL Operators.”

www.ijacsa.thesai.org 63 | P a g e

